Advanced Algorithms

Consider the following

Given a bipartite graph $G = (L \cup R, E)$, define the following Linear Program:

min
$$\sum_{e \in E} c_e x_e$$

such that:

$$\sum_{e \in \delta(u)} x_e = 1$$

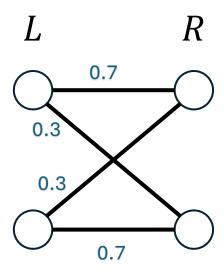
for all $u \in L$

$$\sum_{e \in \delta(v)} x_e = 1$$

for all $v \in R$

$$x_e \geq 0$$

for all $e \in E$



What are integer solutions to this LP? Think about what its dual would be.

Logistics

Assignment due tonight, late deadline = Thursday

• Future assignments: will facilitate groups for those who want

- Academic integrity:
 - Working together is encouraged
 - Asking me for hints is encouraged
 - You **must** submit your own work

Where we are

1. Linear Prog. can model many interesting problems, and is in P

2. Integer Prog. can model MANY problems but is NP-hard

3. We can use Linear Prog. to understand certain Integer Programs

*Also, a language of optimization

Where we are

1. Linear Prog. can model many interesting problems, and is in P

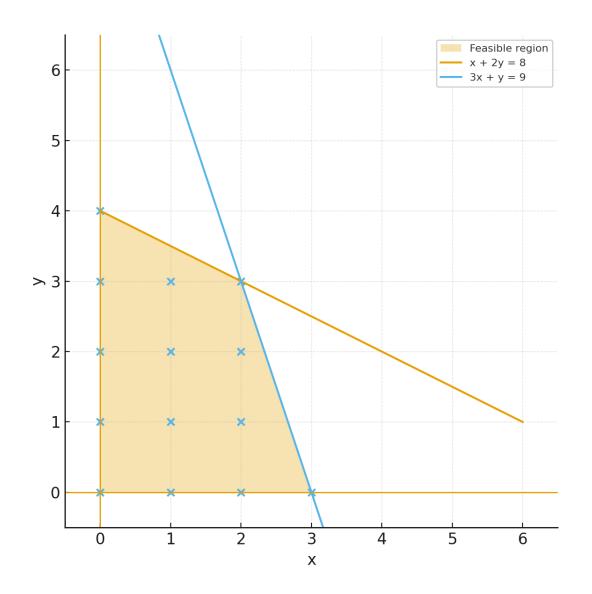
2. Integer Prog. can model MANY problems but is NP-hard

3. We can use Linear Prog. to understand certain Integer Programs

*Also, a language of optimization

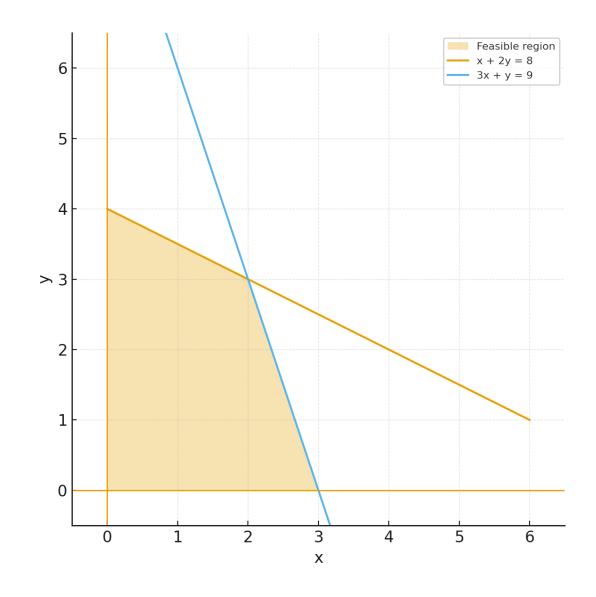
Today

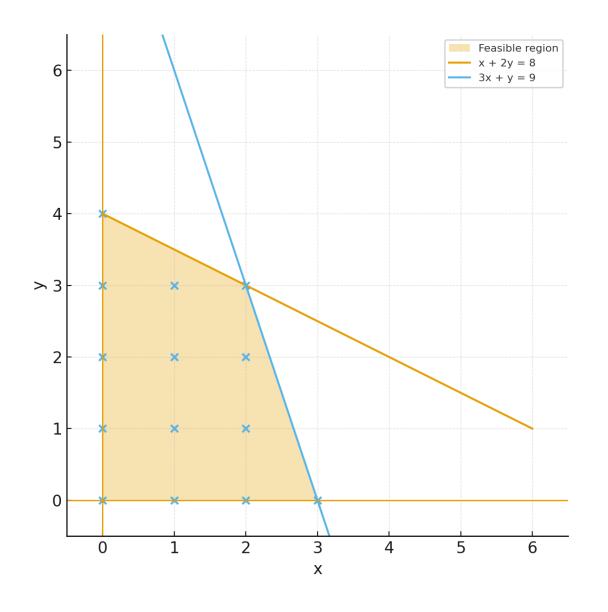
• Integer Programs we can solve efficiently, optimally

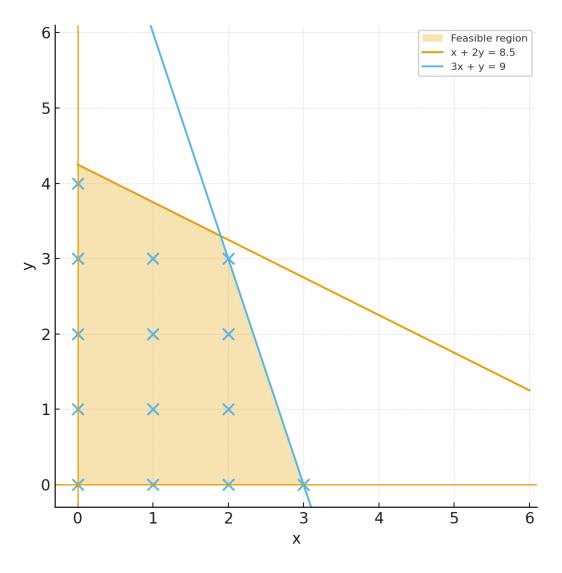


Today

- Integer Programs we can solve efficiently, optimally
- The optimal solution to a linear program will always lie at a "corner" of the feasible region
- AKA an extreme point
- All corners integral:
 - A "perfect formulation"
 - Integrality gap is 1







Main Theorem

Given a bipartite graph $G = (L \cup R, E)$ define the following Linear Program:

min
$$\sum_{e \in E} c_e x_e$$

such that:

$$\sum_{e \in \delta(u)} x_e = 1$$

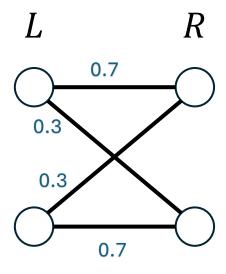
for all $u \in L$

$$\sum_{e \in \delta(v)} x_e = 1$$

for all $v \in R$

$$x_e \geq 0$$

for all $e \in E$



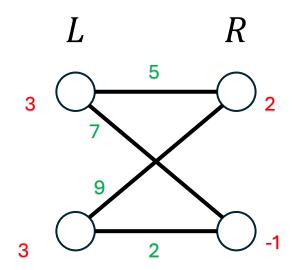
The above Linear Program is a perfect formulation.

Duality

$$\max \sum_{u \in L} p_u + \sum_{v \in R} p_v$$

such that:

$$p_u + p_v \le c_e$$
 for all $e = (u, v) \in E$



Seem familiar?

Duality

 $\min \sum_{e \in E} c_e x_e$

such that:

$$\sum_{e \in \delta(u)} = 1$$
 for all $u \in L$

$$\sum_{e \in \delta(v)} = 1$$
 for all $v \in R$

$$x_e \ge 0$$
 for all $e \in E$

 $\max \sum_{u \in L} p_u + \sum_{v \in R} p_v$

such that:

$$p_u + p_v \le c_e$$
 for all $e = (u, v) \in E$

Where we are

1. Linear Prog. can model many interesting problems, and is in P

2. Integer Prog. can model MANY problems but is NP-hard

3. We can use Linear Prog. to understand certain Integer Programs

*Also, a language of optimization